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Abstract
The problem of two gravitational (or Coulombian) fixed centres is a classical
integrable problem, stated and integrated by Euler in 1760. The integrability
is due to the unexpected first integral G. We introduce some straightforward
generalizations of the problem that still have the generalization of G as a first
integral, but do not possess the energy integral. We present some numerical
integrations showing the main features of their dynamics. In the domain of
bounded orbits the behaviour of these a priori non-Hamiltonian systems is very
similar to the behaviour of usual near-integrable systems.

PACS number: 02.30.Ik

1. Introduction to affine dynamics

The word ‘geometry’ in its primitive understanding refers to the study of figures in the
Euclidean plane or Euclidean space. Several ‘non-Euclidean’ extensions have been given. In
particular, the consideration of planar transformations of the form (x, y) �→ (αx, βy), with
α > 0 and β > 0, named ‘affinities’ in Euler’s Introductio in analysin infinitorum, grounds
the ‘affine geometry’. The publication of Möbius’ Der Barycentrische Calcul (1827) and of
Weyl’s Raum-Zeit-Materie (1918) marked its development. It is not so easy to get a good
intuition of affine space. The following explanation may be helpful.

Suppose we take on a blackboard standard coordinates x and y, i.e. coordinates related to
an orthonormal frame, with a horizontal and a vertical axis. Suppose we define the distance
between two points A = (xA, yA) and B = (xB, yB) by the formula

d(A,B) =
√

p(xA − xB)2 + 2q(xA − xB)(yA − yB) + r(yA − yB)2, (1)
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where p, q and r are fixed real numbers such that pr > q2 and p > 0. It is well-known
that, provided we find a mechanical or optical device to draw the strange ‘circles’ and to
measure the new angles, we will be able to present to the students the usual constructions
and propositions of Euclidean geometry. We will still draw the straight lines using the
usual ruler.

This being observed, the usual choice p = r = 1, q = 0 appears as induced by the
‘physical world’. From the point of view of the internal consistency of Euclidean geometry,
no choice of (p, q, r), satisfying the inequalities above, is distinguished. In the mathematical
terminology, choosing (p, q, r) we fix a Euclidean structure on the blackboard. Different
values of (p, q, r) correspond to different Euclidean structures, which share an important
property: they are such that the length is invariant by the usual translations.

To study the affine geometry of the blackboard means to decide not to make any choice
among the formulae parametrized by p, q and r. In particular, there is no way to measure a
distance or, which comes to the same thing, there is an infinity of non-equivalent ways to do
so. We cannot compare the length of two segments, except those that have the same direction.
The figures called circle, square, rhombus are not defined in affine geometry, while the ellipse,
the hyperbola, the parabola, the parallelogram and the trapezoid are well-defined.

Affine geometry is somewhat simpler and more primitive than Euclidean geometry. In
physics, it is still an abstract idea, because the spaces we need to visualize when we work with
physical models are not purely affine. However, once we observe and teach that the spacetime
of special relativity is an affine space (of course it has also a Minkowskian structure), we give
quite an efficient description of it. Our intuition can rest on some of the concepts of the usual
geometry.

Newton described geometry as a chapter of mechanics. While the figures are objects
studied by geometry, the moving particles and the moving figures are objects studied in
mechanics or dynamics. For example, the theory of geodesic lines should be a chapter of
dynamics, not of geometry. Of course such a ‘classification’ does not survive to a mere change
of our point of view. However, it suggests that we should study as well ‘affine dynamics’,
‘projective dynamics’, ‘spherical dynamics’, ‘pseudo-Riemannian dynamics’, etc.

Affine dynamics has not been studied, as far as we know. Historically, this is
understandable, because at the time when affine geometry appeared, mechanics was too
busy with the study of Hamilton equations, which are related at the beginning with Euclidean
or pseudo-Riemannian dynamics, and subsequently quite incompatible with the refusal to
choose a Euclidean structure. We will show in this paper that a classical system, the two-
fixed-centres problem, may be generalized in two ‘orthogonal’ ways. The known one remains
Euclidean, while the new one is affine and non-Euclidean (indeed something different replaces
the Euclidean structure). The whole structure of the classical problem appears naturally as the
superposition of the structures of both generalizations.

2. Historical introduction to the two-fixed-centres problem

In 1760, Euler stated and reduced to quadratures the two-fixed-centres problem. He considered
a particle in the plane subject to the gravitational attraction of two fixed points with masses
mA and mB . To write the corresponding differential system, we denote by q the position of the
moving particle, by A and B the positions of the fixed attracting masses and by qA = q − A

the vector joining A to q. We also make qB = q − B and u = qB − qA = A − B. The second
derivative of q with respect to time is:

q̈ = −mA‖qA‖−3qA − mB‖qB‖−3qB. (2)
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Figure 1. The two-fixed-centres problem. A particle q with coordinates (x, y) evolves under the
attraction of two centres A and B, with respective coordinates (1, 0) and (−1, 0) and respective
masses mA and mB .

The problem is rather artificial and Euler was interested in it because it is quite similar to what
we now call the restricted three-body problem, which Euler was still hoping to integrate3. After
finding two first integrals, Euler obtained new coordinates (r, s) for q which are separated in
the new differential equation for the trajectories. The solutions could then be obtained by a
quadrature, i.e. by the integration of some elementary function of one variable. In this case the
function is a polynomial of degree 3 to the power −1/2, and the quadrature gives an elliptic
integral. In 1763, Euler solved equation (2) in dimension 3. He also simplified his process
of separating variables, introducing the so-called elliptic coordinates4 σ = ‖qA‖ + ‖qB‖,
τ = ‖qA‖ − ‖qB‖. In 1767, Lagrange wrote, independently of this second work of Euler5, a
work where he also solved the 3D case using the elliptic coordinates. Furthermore, he noticed
that Lambert’s expression of the time in a Keplerian motion could be deduced restricting
some formulae to the particular (and trivial) case mB = 0. Finally, he showed that system
(2) can still be integrated if we add the term −mOqO to its second member, O being the
middle point of (A,B), and qO = q − O. In 1825, Legendre published 129 pages of detailed
studies of the problem in his famous Traité des fonctions elliptiques. In particular, Euler
and Legendre discussed the various cases where the particle describes an algebraic curve.
Liouville discovered that if the second member of (2) is the gradient of a force function of the
form [φ(σ) − ψ(τ)]/(σ 2 − τ 2), where φ and ψ are two functions, it is possible to integrate
with the same method. System (2) with such a generalized second member still possesses
two independent quadratic first integrals, one being the energy. Note that Darboux [Dar]
established a kind of converse, starting with hypotheses on the first integrals, and arriving at
Liouville’s second member.

In 1885, Killing6 extended the two fixed centres problem, changing the Euclidean space
in any space of constant curvature. He obtained the separation of variables in sphero-elliptic
coordinates7 and similar coordinates if the curvature is negative. Developing the ideas of

3 Euler wrote to Lagrange in 1768: ‘Si vous avez réussi de donner à l’un des deux centres de force un mouvement
autour de l’autre, quoiqu’il ne fût que circulaire et uniforme, je le regarderai comme la plus importante découverte
dans l’Astronomie.’ [Eu2]
4 [Eu1], p 257; ‖u‖−1σ = (1 − r)−1(1 + r) and ‖u‖−1τ = (1 + s)−1(1 − s); note that Legendre preferred (p, q)

such that s = p2 and r = q2, while Liouville and Whittaker chose (α, β) with σ = ‖u‖ cosh α and τ = ‖u‖ cos β.
5 See [Lag], p 94. Euler had informed Lagrange in 1762 (see [Eu2]) that he generalized his integration to the 3D
case.
6 [Kil]. Thanks to C Velpry and A Borisov who indicated this paper to us. See also [KoH].
7 The general case where this separation occurs was already published by Liouville [Lio], p 370. But Liouville did
not point out the two-fixed-centres problem on the sphere.
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[Ap1], one can show that Killing’s problem corresponds to Euler’s problem by a central
projection (i.e. a projection from the centre of the sphere to the plane), combined with some
affine transformation.

For a selection of important works on the two-fixed-centres problem and results about
its integration see [Dem]. The problem has been considered as a useful starting point in
astronautics and chemistry (for selected references see [HoW]). Making imaginary the distance
between the two centres A and B, one approximates the gravitational attraction of an oblate
earth (see [Bel]). Some regularities in the spectrum of the ion H +

2 and of other ions or atoms
may be understood starting from a quantization of Euler’s problem (see [RoB]).

3. Generalizing the first integrals

We are only interested in trying to understand the integrability of (2) and we will restrict
ourselves to the planar case. The main fact is the existence of two first integrals8

H = 1

2
‖q̇‖2 − mA

‖qA‖ − mB

‖qB‖ , (3)

G = 〈qA ∧ q̇|qB ∧ q̇〉 − mA

‖qA‖〈qA|u〉 +
mB

‖qB‖〈qB |u〉. (4)

We use 〈.|.〉 for the inner product and ∧ for the exterior product. Most readers would prefer
to read ‘∧ for the vector product’, and this is possible: it also gives the correct formula. But
‘exterior product’ is more accurate, as it works in dimension 2, 3, etc., not only in dimension 3,
and does not require a conventional orientation of the 3D space. As the exterior product does not
even require a choice of Euclidean structure, it will be useful for affine dynamics. Remember
simply that qA ∧ q̇ is called a bivector, it has 1 coordinate in dimension 2, 3 coordinates in
dimension 3, 6 coordinates in dimension 4, etc.

The expansion of the first term of G is 〈qA|qB〉‖q̇‖2 − 〈qA|q̇〉〈qB |q̇〉. But the expression
〈qA∧q̇|qB∧q̇〉 for this term is better because it makes clear that it is an indefinite quadratic form
in q̇ whose null directions pass by the points A and B; and this may suggest the introduction of
elliptic coordinates in the resolution. We will not go further in the question of the resolution.
We simply note that the linear combinations G + ‖u‖2H and G + ‖u‖2H/2 play some role in
the study of the problem.

The first idea that comes in investigating possible generalizations of (2) is to change the
force law, giving two arbitrary real functions φA and φB and considering

q̈ = −mAφA(‖qA‖2)qA − mBφB(‖qB‖2)qB. (5)

As was already noticed by Lagrange, nothing replaces the first integral G in this general
case. The energy H takes the form 2H = ‖q̇‖2 + mA�A(‖qA‖2) + mB�B(‖qB‖2), where �A

and �B are such that �′
A = φA and �′

B = φB .
A new remark is that there exists a kind of dual possibility of generalization. If we forget

the Euclidean structure of the plane and define the equation

q̈ = −mAfA(qA)qA − mBfB(qB)qB (6)

where fA and fB are quite arbitrary positively homogeneous functions of degree −3, then
we lose the integral H, while G takes a more general form that we shall write after some
explanation about the one-fixed-centre problem.

8 In dimension 3 the angular momentum with respect to the (AB) axis is conserved. We can express it as the trivector
C = qA ∧ qB ∧ q̇. The first integrals H and G keep the same expression. It is obvious that H, G and C commute.
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4. One centre: a problem integrated by Jacobi

We describe in a modern language a discovery by Jacobi [Jac] that has been developed later by
Darboux [Da1]. The literature on the subject is very brief, apparently limited to the few pages of
these authors, and to the short presentations in the treatises [App], [Rou] and [Whi]. However,
all the recent works trying to ‘explain’ the existence of the eccentricity vector, discussing a
‘hidden symmetry’, should be reconsidered in view of the Jacobi–Darboux generalization.
Jacobi studied the equation

q̈ = −mf (q)q, (7)

where f is any positively homogeneous function of degree −3, everywhere defined except at
the origin. Intuitively, f decreases as 1/‖q‖3 when we follow the rays, but behaves differently
as a function of the ‘angle’. We should not consider that we can measure angles, but rather
think our plane of motion as a vector space of dimension 2 where no Euclidean structure is
distinguished. A vector space is an affine space where a particular point called zero has been
distinguished.

A way to state the Jacobi result is: system (7) is integrable by quadratures. It possesses
two or three independent first integrals of motion, of degree 1 or 2 in the velocities.

The constant of areas C = q ∧ q̇ is a first integral: Ċ = q ∧ q̈ = 0. This is the first
theorem in Newton’s Principia: the area law is true for any kind of central force. The name
‘angular momentum’ for C is quite inappropriate in a context where we did not choose any
way to measure angles. It is only in particular cases that the conservation of C can be related
to some symmetry of rotation.

4.1. Linear coordinates

From now on it is a reasonable choice, in order to stay elementary, to give up the vectorial
notations. We choose a system of linear coordinates (x, y) of our 2-dimensional vector space.
The coordinates of the vector q being x and y, our system and integral read

ẍ = −mf (q)x, ÿ = −mf (q)y, C = xẏ − yẋ. (8)

The previous formula C = q ∧ q̇ is slightly different from the new one: C was a bivector;
now C is a real number. This means that we implicitly chose a unit of area. To obtain the real
number from the bivector, it is sufficient to evaluate the bivector against dx ∧ dy. This is the
elementary computation 〈dx ∧ dy|q ∧ q̇〉 = 〈dx|q〉〈dy|q̇〉 − 〈dx|q̇〉〈dy|q〉 = xẏ − yẋ.

Making a choice of linear coordinates (x, y) we chose a unit of area. This is a serious
dilemma for us. In the same way, the choice of the linear coordinates (x, y) implicitly
distinguishes among formulae (1) the ‘standard distance’ with p = r = 1, q = 0. While
working in coordinates, we cannot immediately decide if the formulae we write depend or not
on the choice of a Euclidean structure, i.e. if they are natural constructions in affine geometry.

This is why vector notations would be better in these considerations: they display clearly
what the ingredients are. But, on the other hand, vector notations may render the text
unreadable9. We will soon take party for the linear coordinates and let the reader convince
himself that no choice of Euclidean structure is implicitly introduced, what he can do using
linear changes of coordinates, or computing the coordinates of the vectorial expressions in
[Al1].

9 Between coordinates and exterior algebra notations there is the possibility of working with the traditional notations
with indices. An outstanding discussion of tensor notations is [Sch], section 11. Avoiding vector notations we follow
in a sense a recommendation in a footnote of section 11.7: ‘But following the advice of F Klein who warned him that
the paper would never be read, he translated it in terms of RICCI calculus’.



9114 A Albouy and T J Stuchi

4.2. Other first integrals

To express the other first integrals, we should first compute an important vector k which, up to
a conventional scaling, depends only on the function f . Let σ = x dy − y dx be the 1-form
measuring twice the infinitesimal area swept out from the origin by the moving point q with
coordinates x and y. In vector notation this form is related to the constant of areas C by the
formula C = 〈σ |q̇〉. Note that we have σ = q dx∧ dy and the elementary ‘interior product’
versus ‘exterior product’ (see [Ste], p 20) formula C = 〈q dx ∧ dy|q̇〉 = 〈dx ∧ dy|q ∧ q̇〉.

The coordinates of the vector k are

xk =
∮

xf (q)σ, yk =
∮

yf (q)σ. (9)

The integration path is any simple, direct, closed path in the plane, around the origin. The
result of each integration does not vary if we vary the path without crossing the origin: the
1-forms xf (q)σ and yf (q)σ are closed. This follows from the standard lemma:

Lemma. Let g(x, y) be any positively homogeneous function of degree −2, and σ =
x dy − y dx. Then d(gσ ) = 0, i.e. gσ is a closed 1-form.

Proof. We have gσ = −gy dx + gx dy and we must check whether −∂(gy)/∂y = ∂(gx)/∂x.
This happens to be Euler’s relation x(∂g/∂x)+y(∂g/∂y) = −2g, satisfied by the homogeneous
function g. �

If k �= 0, k points a direction that does not depend on the choice of the linear coordinates.
There is a clever way to choose new linear coordinates: take y ′ = ykx−xky as the new ordinate,
and x ′ = ax + by with a and b satisfying λ = axk + byk �= 0. Then σ ′ = x ′ dy ′ − y ′ dx ′ = λσ .
In the new system, the vector k′ = λk has the coordinates

x ′
k′ =

∮
x ′f (q)σ ′, y ′

k′ =
∮

y ′f (q)σ ′ = 0.

We select once for all this new system of coordinates and forget the ′ symbols: the last relation
will be written simply yk = ∮

yf (q)σ = 0. As the origin q = 0 is the unique singularity of
the 1-form yf (q)σ , this relation means that the closed 1-form is exact, i.e. that there exists a
function Y of q such that dY = f (q)y(x dy − y dx). Consequently Ẏ = 〈dY, q̇〉 = f (q)yC,
in which we recognize one of the second members in (8). We have mẎ = −Cÿ. Thus we get
a first integral by integration. There exists a constant β such that

β = mY(q) + Cẏ. (10)

This is our second invariant quantity. Observe that Y is positively homogeneous of degree 0,
i.e. constant along the rays from the origin q = 0.

4.3. Integration by quadratures

The particular case where xk = ∮
xf (q)σ is also zero will be studied with attention, but even

when xk �= 0 we can obtain a relation similar to (10)

α = mX(q) + Cẋ. (11)

The fundamental difference is that here the ‘function’ X(q), constructed by integration
along paths of the closed form xf (q)σ , is many-valued. If its value at q0 is X(q0), and if we
move the point, making one turn counterclockwise around the origin, the value of X at the
same point q0 will be

X(q0) +
∮ q0

q0

xf (q)σ = X(q0) + xk.
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Figure 2. An orbit of a Jacobi problem.

The pseudo first integral (11) will allow us to show that any solution of system (8) can be
obtained by a quadrature.

We take the initial condition (q0, q̇0). If C = q0 ∧ q̇0 = 0, the trajectory is rectilinear; it
is a trajectory of the usual Kepler problem. If C �= 0 we know that the trajectory will ‘turn’
in a given direction, without going backwards. It cuts the rays transversally. The set of rays
‘parametrizes’ the trajectory. One can of course parametrize by a number rather than by a
set, e.g. choosing, as Jacobi did, the angle of the ray with a fixed direction. But in the affine
context the definition of an angle implies an arbitrary choice.

To obtain the position q and the velocity q̇ when the trajectory crosses a given ray we first
compute X and Y on this ray. The quantities α, β and C �= 0 being computed from the initial
condition (q0, q̇0), we deduce from (10) and (11) the coordinates (ẋ, ẏ) of q̇. The ‘length’
of q is now determined by the equation C = xẏ − yẋ. Thus we obtained (q, q̇). We used
a ‘quadrature’ at the first step: the determination of X and Y for the chosen ray. Another
quadrature is required to obtain the time t when we cross the chosen ray. For this we compute
twice the area swept out, and divide by the constant of areas C.

Let us come back to our statement of Jacobi’s result. The integrability by quadratures has
been established. But we have also a claim on the number of first integrals. We know C and
β, respectively a linear function and a quadratic function in q̇. In the case k �= 0, α is not a
first integral. There is no apparent obstruction to the existence of a third invariant quantity but
it is easy to see that it could not be a quadratic function in q̇. Instead, α is a first integral in the
case k = 0, where X is a ‘good’ single-valued function.

4.4. Orbits

The Jacobi problem is thus integrable. Modern physicists would tend to reject it as ‘not
physical’, because the position space is neither naturally Euclidean nor pseudo-Riemannian,
and the phase space is not naturally symplectic. However it is objectively as strongly related to
the Kepler problem as are the generalizations integrated by Newton, where the magnitude of
the central force is an arbitrary function of the distance. We do think it occupies an important
place in the theory of integrable systems, being historically one of the first ‘physical-like’
integrable systems that does not live in a phase space canonically endowed with a symplectic
form. The nonholonomic mechanical systems provide more physical examples (see [BaC],
[BM1], [VeV]).

We give in figure 2 a typical orbit of the Jacobi problem in the case k �= 0. Conventionally
the direction of k is horizontal. One of the striking features is the existence of two points
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where the trajectory passes several times. An elementary discussion of the states compatible
with given invariants C = C0 �= 0 and β = β0 will give us the coordinates of these points.

The result of this discussion is: to each position out of the horizontal axis is associated
a unique velocity vector such that C = C0 �= 0 and β = β0; to a position on this axis no
compatible velocity vector can be associated, with the exception of at most one position with
x > 0, and at most one position with x < 0. To each of these exceptional positions are
associated infinitely many velocity vectors.

The proof is: given (x, y) �= (0, 0), C0 �= 0 and β0, the condition xẏ − yẋ = C0 fixes a
line in the (ẋ, ẏ) space. The condition β0 = mY(x, y) + C0ẏ uniquely determines ẏ: except
if the line is horizontal, we obtained a unique (ẋ, ẏ) on it. The line is horizontal when y = 0;
in this case we have ẏ = [β0 − mY(x, 0)]/C0. But Y is constant on the rays: this equation
may be written ẏ = ẏ+ ∈ R if x > 0, ẏ = ẏ− ∈ R if x < 0. This forces two values for
x: x+ = C0/ẏ+ and x− = C0/ẏ−. If x+ > 0, we get an exceptional position (x+, 0). If x− < 0,
we get an exceptional position (x−, 0).

5. The Jacobi–Darboux attractors

The case k = 0, i.e. xk = yk = 0 in (9), defines an important subclass of Jacobi problems,
which includes the Kepler problem. The construction leading to the expression (10) of the
invariant scalar β gives more. It gives an invariant vector with coordinates (α, β).

Let (x, y) be the coordinates of the position q in a system of linear coordinates,
σ = x dy − y dx the ‘area swept’ 1-form, ẍ = −mf (q)x and ÿ = −mf (q)y the equations of
motion. Here f is a positively homogeneous function of degree −3 such that xk = yk = 0,
i.e. such that the forms xf (q)σ and yf (q)σ are exact on the plane minus the origin. This data
defines what we call a Jacobi–Darboux attractor. We introduce two functions X(q) and Y (q)

characterized, up to the addition of an arbitrary constant, by the equations

dX = f (q)x(x dy − y dx), dY = f (q)y(x dy − y dx).

As above, we deduce that the quantities

C = xẏ − yẋ, α = mX(q) + Cẋ, β = mY(q) + Cẏ, (12)

are first integrals of the motion. We note that xβ − yα = C2 + m(xY − yX) is an equation for
the trajectory, which must be closed and without self-intersection if it makes more than one
turn around the origin, and unbounded otherwise.

One of the simplest Jacobi–Darboux problems is the Kepler problem, where f =
(x2 + y2)−3/2. We choose X = (x2 + y2)−1/2y and Y = −(x2 + y2)−1/2x. What is usually
called the eccentricity vector10 is m−1(−β, α) or m−1(β,−α).

6. Two Jacobi–Darboux attractors

We consider equation (6), which corresponds to the attraction of two fixed centres of Jacobi’s
type. We write this equation in coordinates. The attractor A is at (1, 0), the attractor B at
(−1, 0) and q at (x, y). Let xA = x − 1, xB = x + 1, qA = (xA, y), and qB = (xB, y). System
(6) reads:

ẍ = −mAfA(qA)xA − mBfB(qB)xB, ÿ = −mAfA(qA)y − mBfB(qB)y. (13)

10 Also called perivector, or Laplace–Runge–Lenz vector, but due to Jacob Herman, who wrote one of its coordinates
in 1710, and to Lagrange, who published the expressions of its three coordinates in his famous paper [La1], p 132.
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The function fA and fB are positively homogeneous of degree −3. To each centre we
can associate the quantities introduced in the study of Jacobi’s one centre problem. We put
σA = xA dy − y dxA and σB = xB dy − y dxB .

Theorem. If both closed 1-forms fA(qA)yσA and fB(qB)yσB are exact forms, i.e. if there
exist two single-valued functions YA(qA) and YB(qB) such that

dYA = fA(qA)yσA, dYB = fB(qB)yσB,

System (13) admits a first integral G. Let CA = xAẏ − yẋA, CB = xBẏ − yẋB . Then

G = CACB + 2mAYA(qA) − 2mBYB(qB). (14)

Proof. This is easily checked using the following straightforward identities: ĊA =
2mBfBy, ĊB = −2mAfAy, ẎA = fAyCA, ẎB = fByCB . �

The hypothesis of the theorem may be stated differently: the vectors kA and kB

associated with both centres by expressions corresponding to (9) are horizontal. This is
true if both centres are Jacobi–Darboux centres, and we dedicated our numerical studies
to this particular case. If equation (13) is equation (2) the expressions (4) and (14)
for G coincide: we have fA = (

x2
A + y2

)−3/2
, fB = (

x2
B + y2

)−3/2
, and we choose

YA = −(
x2

A + y2
)−1/2

xA, YB = −(
x2

B + y2
)−1/2

xB .

7. Numerical study of some examples: near-integrable behaviour

We report our numerical exploration of these generalized Euler’s problems, showing three
examples that seem to us significant. In all cases we met, the result is either escape or near-
integrable behaviour. The third experiment displays a set of islands whose complexity seems
incompatible with integrability.

We present Poincaré sections and orbits in the plane. In each example we fix once for all
the value of the first integral G. The Poincaré section is y = 0, with the condition ẏ > 0. In
the third example, we chose to display only the points with x < 0. Since the examples have
very large orbits, we have taken throughout the numerical experiments a somewhat arbitrary
cut-off criterion given by the value of any coordinate or velocity greater than a thousand.

We work with system (13) that we write in the simplified form

ẍ = −fA(xA, y)xA − fB(xB, y)xB, ÿ = −fA(xA, y)y − fB(xB, y)y, (15)

with xA = x − 1, xB = x + 1. In the three examples the functions fB are different, but the
function fA is the same. Here is its expression, followed by the expression of its ‘primitive’
YA, which appears in the expression of G.

fA(ξ, η) = 3ξη

10r5
+

1

2r3
, YA(ξ, η) = η3

10r3
− ξ

2r
, with r =

√
ξ 2 + η2.

7.1. First example

In figures 3 and 4 the function fB and its primitive are

fB(ξ, η) = 2ξ(ξ 2 − 3η2)

r6
+

1

r3
, YB(ξ, η) = ξ 4 − 3η4 + 6ξ 2η2

4r4
− ξ

r
.

We chose G = 5.504331 for all the orbits. We observe that the Poincaré map is close to a
linear map, on a whole domain delimited by the escape criterion.
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Figure 3. Example 1. Left side: Poincaré section (y = 0, ẏ > 0), from the central periodic
orbit to the neighbourhood of the last torus before cut-off. Right side: the periodic orbit
x = 2.352 464, ẋ = 0.362 169 and ẏ = 1.050 5775.
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Figure 4. Example 1. The last orbit shown in the Poincaré section just before our escape criterion
is satisfied: x = 2.469 875, ẋ = 0.362 169 and ẏ = 0.990 5488.

7.2. Second example

In figures 5 and 6, we have chosen

fB(ξ, η) = 12ξ 2η2

(ξ 4 + η4)7/4
, YB(ξ, η) = −4ξ 3

(ξ 4 + η4)3/4
.

We have G = 10.92 for all the orbits. Here the section displays a wide domain with strong
torsion but does not show any indication of non-integrability.

7.3. Third example

In figures 7–9, we have fixed G = 1.55230 255 and chosen

fB(ξ, η) = ξη

r5
+

1

r3
, YB(ξ, η) = η3

3r3
− ξ

r
.

The system behaves as a typical conservative system close to an integrable one.
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Figure 5. Example 2. Left side: Poincaré section (y = 0, ẏ > 0), from the central periodic orbit
to the neighbourhood of the last torus before cut-off. Right side: the periodic orbit with initial
conditions x = 2.6004, ẋ = 0.2935 and ẏ = 0.824 809.
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Figure 6. Example 2. Left side: a typical torus at x = 6.1, ẋ = 0.2935 and ẏ = 0.329 025. Right
side: a detail of the last torus before escape with x = 13.6, ẋ = 0.2934 and ẏ = 0.145 976.

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-5.5 -5 -4.5 -4 -3.5 -3 -2.5 -2 -1.5

vx

x

Figure 7. Example 3. Section (x < 0, y = 0, ẏ > 0) starting at the central periodic orbit up to
escaping orbits.



9120 A Albouy and T J Stuchi

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-5 -4 -3 -2 -1 0 1 2 3 4 5

y

x

-0.7

-0.68

-0.66

-0.64

-0.62

-0.6

-0.58

-0.56

-0.54

-0.52

-1.9 -1.85 -1.8 -1.75 -1.7 -1.65 -1.6 -1.55 -1.5

vx

x

Figure 8. Example 3. Left: the central periodic orbit x = −3.946 1335, ẋ = 0.217 055 17 and
ẏ = 0.418 511 07. Right: detail of the section above, with islands.
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Figure 9. Example 3. Left: a regular torus, with initial coordinates x = −1.808 57,
ẋ = −0.526 993 42, ẏ = 1.060 1435. Right: an ‘island’, corresponding to initial conditions
x = −1.564 1944, ẋ = −0.663 632 63, ẏ = 1.328 239.

8. Elements of interpretation

8.1. Behaviour at infinity

Example 1 displays a spectacular deformation of the orbit, which extends to infinity, while
the behaviour in the Poincaré section remains perfectly quiet. A kind of explanation for this
phenomenon comes from geometrical considerations. We have chosen the plane as the domain
for the motion, but there is a natural bigger domain for this kind of systems. In mathematical
terminology, it is the double covering of the projective closure of the plane. More simply, it
is the space whose points are half-lines drawn from the origin in a three-dimensional vector
space V . It has the topology of the sphere. Our plane is one half of this ‘sphere’: we consider
it as an affine plane in V , and we identify any of its points to the half-line drawn through it
from the origin of V . In this way we only get a ‘half’ of the space of half-lines, a hemisphere
in our sphere. Escaping orbits appear as orbits cut by the boundary of the hemisphere (in the
classical Kepler problem, hyperbolas appear in the same way as cut ellipses). These remarks
lead to ‘projective dynamics’. Some elements may be found in [Ap1], [Alb] and [Al1]. The
conclusion is the following: in figures 3 and 4 the last orbits, corresponding to the exterior
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circle in the Poincaré section, are special in affine dynamics, as they are the first to escape, but
are ordinary orbits in the ‘good’ framework, that would be projective dynamics.

8.2. Regular behaviour

In the examples most trajectories are very regular. To explain this we must describe the
systems, in the domains we studied them, as small perturbations of integrable systems.

This raises a first question: what are the integrable systems nearby? We know very few
cases where our generalized Euler problem is integrable, namely the classical case and its
projective transformations. These projective transformations are not well known, and also
belong to the ‘projective’ aspects of affine dynamics, discovered by Appell. Here is their
description. From a dynamics in the space of half-lines of V , mentioned above, we obtain
an affine dynamics on any affine plane included in V . If for such a plane the dynamics
is defined by Euler’s equations (2), then on another plane it will be defined by different
equations, namely equations of the family (13) with fA(ξ, η) = (pξ 2 + 2qξη + rη2)−3/2,
fB(ξ, η) = (p′ξ 2 + 2q ′ξη + r ′η2)−3/2, where p, . . . , r ′ are 6 real numbers. These are the
projective transformations. They are integrable.

This family seems too small to provide good approximations of our systems. Maybe a
supplementary explanation for the regularity of most trajectories is our implicit requirement
that the trajectory should not escape. Maybe the boundedness on a long time is satisfied only
for orbits sufficiently close to orbits of an integrable system.

8.3. About Hamiltonianity

Our third Poincaré section looks like the usual sections of near-integrable Hamiltonian
systems. One can distinguish on the pictures some familiar objects: many periodic orbits
of different complexity, invariant closed curves, probably also stable and unstable manifolds
near hyperbolic periodic points. However we do not think that our systems are Hamiltonian,
even if we cannot provide any convincing argument (compare [BoM]).

Let us call a natural system a differential system ẍ = X(x, y), ÿ = Y (x, y), with the
property that the field of forces (X, Y ) is derived from a potential U, i.e. X = ∂U/∂x and
Y = ∂U/∂y. These systems are well studied; they are Hamiltonian systems; in particular they
possess a first integral ẋ2 + ẏ2 − 2U .

In system (13) the existence of a potential is not assumed. However, there is a first
integral G, which is ‘quadratic’, i.e. is a polynomial of degree two in the velocity vector
(ẋ, ẏ). This property makes our system a close generalization of natural systems. This kind
of generalization has not been well studied, even if by many aspects it is much closer to
natural systems than other well-known generalizations. It presents striking formal similarities
with natural systems. For example, by an argument due to Bertrand [Ber], the first integral
G = CACB + 2W(x, y) uniquely determines the field of forces, by the relations

−y(xY − yX) +
∂W

∂x
= 0, (x2 − 1)Y − xyX +

∂W

∂y
= 0.

We would like to go further and find a symplectic form such that our system is the
Hamiltonian system associated with G. This seems impossible, but it is however possible to
obtain something if we accept to make a change of time and if we avoid the y = 0 axis. We
will not develop here these interesting properties, because we can explain the main features of
our Poincaré sections by much simpler considerations.

An area is preserved on the Poincaré section. Indeed our system defines a first-order differential
system in the phase space R

4 of the form ẋ = vx, ẏ = vy, v̇x = X(x, y), v̇y = Y (x, y). Such
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a system is obviously divergence free. This property, together with the invariance of G, implies
that the first return map on the Poincaré section is area-preserving. Precisely, the area form
(x2 − 1)−1 dx ∧ dvx , defined on the Poincaré section y = 0, x2 − 1 > 0 and G = G0, is
invariant. The well-known theory of area-preserving maps provides a good framework to
prove, for example, the existence of invariant closed curves, using KAM theory.

Our systems are reversible. Any system of the form ẍ = X(x, y), ÿ = Y (x, y) is reversible:
if at some instant we change the velocity (ẋ, ẏ) in (−ẋ,−ẏ), the particle will go backwards
on its trajectory. This property is easier to observe than the existence of a preserved area,
and, according to [Mos], the framework of reversible systems will also simplify the proofs
in KAM theory. KAM theory has been developed initially in the framework of Hamiltonian
systems. But even today it is not well-known that Bibikov and Pliss, and Moser independently,
showed in 1967 that this framework might be replaced, and that one could work with reversible
perturbations of integrable systems as well (see [Sev]). The theory remains very similar, and
also predicts the existence of invariant closed curves in our Poincaré sections.
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